116 research outputs found

    Local pinning of networks of multi-agent systems with transmission and pinning delays

    Get PDF
    We study the stability of networks of multi-agent systems with local pinning strategies and two types of time delays, namely the transmission delay in the network and the pinning delay of the controllers. Sufficient conditions for stability are derived under specific scenarios by computing or estimating the dominant eigenvalue of the characteristic equation. In addition, controlling the network by pinning a single node is studied. Moreover, perturbation methods are employed to derive conditions in the limit of small and large pinning strengths.Numerical algorithms are proposed to verify stability, and simulation examples are presented to confirm the efficiency of analytic results.Comment: 6 pages, 3 figure

    Pinning Complex Networks by a Single Controller

    Full text link
    In this paper, without assuming symmetry, irreducibility, or linearity of the couplings, we prove that a single controller can pin a coupled complex network to a homogenous solution. Sufficient conditions are presented to guarantee the convergence of the pinning process locally and globally. An effective approach to adapt the coupling strength is proposed. Several numerical simulations are given to verify our theoretical analysis

    A Stochastic Model of Active Cyber Defense Dynamics

    Full text link
    The concept of active cyber defense has been proposed for years. However, there are no mathematical models for characterizing the effectiveness of active cyber defense. In this paper, we fill the void by proposing a novel Markov process model that is native to the interaction between cyber attack and active cyber defense. Unfortunately, the native Markov process model cannot be tackled by the techniques we are aware of. We therefore simplify, via mean-field approximation, the Markov process model as a Dynamic System model that is amenable to analysis. This allows us to derive a set of valuable analytical results that characterize the effectiveness of four types of active cyber defense dynamics. Simulations show that the analytical results are inherent to the native Markov process model, and therefore justify the validity of the Dynamic System model. We also discuss the side-effect of the mean-field approximation and its implications

    Active Cyber Defense Dynamics Exhibiting Rich Phenomena

    Full text link
    The Internet is a man-made complex system under constant attacks (e.g., Advanced Persistent Threats and malwares). It is therefore important to understand the phenomena that can be induced by the interaction between cyber attacks and cyber defenses. In this paper, we explore the rich phenomena that can be exhibited when the defender employs active defense to combat cyber attacks. To the best of our knowledge, this is the first study that shows that {\em active cyber defense dynamics} (or more generally, {\em cybersecurity dynamics}) can exhibit the bifurcation and chaos phenomena. This has profound implications for cyber security measurement and prediction: (i) it is infeasible (or even impossible) to accurately measure and predict cyber security under certain circumstances; (ii) the defender must manipulate the dynamics to avoid such {\em unmanageable situations} in real-life defense operations.Comment: Proceedings of 2015 Symposium on the Science of Security (HotSoS'15

    Characterizing the Power of Moving Target Defense via Cyber Epidemic Dynamics

    Full text link
    Moving Target Defense (MTD) can enhance the resilience of cyber systems against attacks. Although there have been many MTD techniques, there is no systematic understanding and {\em quantitative} characterization of the power of MTD. In this paper, we propose to use a cyber epidemic dynamics approach to characterize the power of MTD. We define and investigate two complementary measures that are applicable when the defender aims to deploy MTD to achieve a certain security goal. One measure emphasizes the maximum portion of time during which the system can afford to stay in an undesired configuration (or posture), without considering the cost of deploying MTD. The other measure emphasizes the minimum cost of deploying MTD, while accommodating that the system has to stay in an undesired configuration (or posture) for a given portion of time. Our analytic studies lead to algorithms for optimally deploying MTD.Comment: 12 pages; 4 figures; Hotsos 14, 201
    corecore